The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain valid in future research and that it will extend, for better or for worse, to our pleasure, even though perhaps also to our bafflement, to wide branches of learning.

How did Biot arrive at the partial differential equation? [the heat conduction equation] . . . Perhaps Laplace gave Biot the equation and left him to sink or swim for a few years in trying to derive it. That would have been merely an instance of the way great mathematicians since the very beginnings of mathematical research have effortlessly maintained their superiority over ordinary mortals.

There have been many authorities who have asserted that the basis of science lies in counting or measuring, i.e. in the use of mathematics. Neither counting nor measuring can however be the most fundamental processes in our study of the material universe—before you can do either to any purpose you must first select what you propose to count or measure, which presupposes a classification.

There is the potential for a particle of matter to be located where we expect it to be or to be located anywhere in the physical world. So it is with our lives – our very next moment can occur along the most probable path or it can occur on a path entirely discontinuous with the expectations that others have for us, but more likely in line with the expectations that we have for ourselves.

There was a seminar for advanced students in Zürich that I was teaching and von Neumann was in the class. I came to a certain theorem, and I said it is not proved and it may be difficult. Von Neumann didn’t say anything but after five minutes he raised his hand. When I called on him he went to the blackboard and proceeded to write down the proof. After that I was afraid of von Neumann.

For we may remark generally of our mathematical researches, that these auxiliary quantities, these long and difficult calculations into which we are often drawn, are almost always proofs that we have not in the beginning considered the objects themselves so thoroughly and directly as their nature requires, since all is abridged and simplified, as soon as we place ourselves in a right point of view.

Be honest: did you actually read [the above geometric proof]? Of course not. Who would want to? The effect of such a production being made over something so simple is to make people doubt their own intuition. Calling into question the obvious by insisting that it be 'rigorously proved' ... is to say to a student 'Your feelings and ideas are suspect. You need to think and speak our way.

There cannot be a language more universal and more simple, more free from errors and obscurities...more worthy to express the invariable relations of all natural things [than mathematics]. [It interprets] all phenomena by the same language, as if to attest the unity and simplicity of the plan of the universe, and to make still more evident that unchangeable order which presides over all natural causes

So how does one go about proving something like this? It's not like being a lawyer, where the goal is to persuade other people; nor is it like a scientist testing a theory. This is a unique art form within the world of rational science. We are trying to craft a "poem of reason" that explains fully and clearly and satisfies the pickiest demands of logic, while at the same time giving us goosebumps.

Je me rends parfaitement compte du desagreable effet que produit sur la majorite de l'humanité, tout ce qui se rapporte, même au plus faible dègré, á des calculs ou raisonnements mathematiques.I am well aware of the disagreeable effect produced on the majority of humanity, by whatever relates, even at the slightest degree to calculations or mathematical reasonings.

I carried this problem around in my head basically the whole time. I would wake up with it first thing in the morning, I would be thinking about it all day, and I would be thinking about it when I went to sleep. Without distraction I would have the same thing going round and round in my mind.(Recalling the degree of focus and determination that eventually yielded the proof of Fermat's Last Theorem.)

In the field of Egyptian mathematics Professor Karpinski of the University of Michigan has long insisted that surviving mathematical papyri clearly demonstrate the Egyptians' scientific interest in pure mathematics for its own sake. I have now no doubt that Professor Karpinski is right, for the evidence of interest in pure science, as such, is perfectly conclusive in the Edwin Smith Surgical Papyrus.

Further, the same Arguments which explode the Notion of Luck, may, on the other side, be useful in some Cases to establish a due comparison between Chance and Design: We may imagine Chance and Design to be, as it were, in Competition with each other, for the production of some sorts of Events, and many calculate what Probability there is, that those Events should be rather be owing to the one than to the other.

Jack had wondered how geometers could be so inventive as to produce so many types and families of curves. Later he had come to perceive that of curves there was no end, and the true miracle was that poets, or writers, or whoever it was that was in charge of devising new words, could keep pace with those hectic geometers, and slap names on all the whorls and snarls in the pages of the Doctor's geometry-books.

He calculated the number of bricks in the wall, first in twos and then in tens and finally in sixteens. The numbers formed up and marched past his brain in terrified obedience. Division and multiplication were discovered. Algebra was invented and provided an interesting diversion for a minute or two. And then he felt the fog of numbers drift away, and looked up and saw the sparkling, distant mountains of calculus.